FIS Ski Jumping wind + gate compensation explained

Wind @ Measurement Point 1 Measurement Point 2 Measurement Point 3 Measurement Point 4 Measurement Point 5

- Define positive direction ↑, negative direction ↓

- Calculate forwards projected vectors for all wind measurements, e.g. for measurement point 1:

\[
\alpha \approx \cos(\alpha) = \frac{x_1}{2.5} \quad \alpha = 17^\circ
\]

\[
x_1 \approx 2.39 \text{ (m/s)}
\]

- Do same for measurements 2-5 to obtain \(x_2 - x_5 \). Note that \(x_4 \) will yield a negative value and \(x_5 \) a zero.

- Calculate the total average wind \(a \) using a weighted average from all measurement components \(x_1 - x_5 \), according to:

\[
a = \frac{c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 + c_5 x_5}{c_1 + c_2 + c_3 + c_4 + c_5},
\]

where \(c_1 - c_5 \) are “pre-calculated” weight coefficients. Measurements closer to the downhill are of bigger importance and thus have higher \(c \) factors, depending on the hill.

- The total average wind contribution \(a \) is multiplied with a hill-dependent coefficient \(k \), which will give the total factor to add to the jumper’s points.

Ex. Engelberg 2011. During the first jump of Anders Bardal, the wind average was \(a = -0.91 \text{ m/s} \). Wind factor for the Engelberg large hill is \(k = 9.09 \) [points per m/s], gate factor \(g = 7.40 \) [points per m]. The gate was lowered by 1 step (0.5 m) for Bardal. Calculate the total compensation.

Bardal will receive

\[-a \cdot k + \frac{1}{2} g = 12\]

points extra to his total points (with FIS’ approximation).
Pros

- No round restarts needed, gate can be lowered mid competition
- Parameters can easily be adjusted, straightforward calculation
- More “fair” than no compensation at all

Cons

- The model only considers winds in the plane of the jumper’s velocity. Side winds are omitted, although they can affect the jump negatively.
- The point compensation is *directly proportional* to the total average wind a. Such a model cannot approximate the penalty well enough for both small and large winds. A large change in wind should yield an even larger point compensation compared to a small change of wind (figure). This requires nonlinear calculation, or at least a more advanced linear relationship.

- Turbulence (change of velocity in wind during a jump) is not considered
- The model does not consider the length of jump (longer jump = longer subject to positive/negative winds)

Conclusions

- Model is adequate for “fine weather” competitions with small (< 1 m/s) wind variations
- Compensation for a small gate change works adequately
- Competitions where both the gate and wind varies significantly are beyond the scope of this model
- Length of jump should be considered in future models, critical especially in flying hills